## Mathematics Requirements in Aero/Astro

Each Aero/Astro degree has a math requirement, for which courses on the following list are pre-approved. (Other advanced courses may also be acceptable.) Students should consult with their advisors in selecting the most appropriate classes for their field. M.S. and Engineer candidates select 2 courses (at least 6 units). Ph.D. candidates select 3 courses, with at least 6 units from courses numbered above 200. Note: Courses with the same "footnote" cannot be combined, e.g., both Math $113\left({ }^{*}\right)$ and ME 300A (*)
Course Number
AA 203
AA 212
AA 214
AA 222
AA 228 (CS 238)
AA 242B (ME 242B)
AA 273
AA 277
CEE 281
CME 108 (MATH 114)
CME 302
CME 303 (MATH 220)
CME 306 (MATH 226)
CME 307 (MS\&E311)
CME 308 (MATH 228, MS\&E 324)
CS 221
CS 229 (STATS 229)
EE 261
EE 263
EE 264
EE 266 (MS\&E 251)
EE 278
EE 364A
EE 364B
ENGR 209A
MS\&E 201
MS\&E 221
MS\&E 311
MS\&E 351
MATH 113
MATH 115
MATH 120
MATH 171

* MATH 2xx
ME 300A (CME 200)
ME 300B (CME 204)
ME 300C (CME 206)
ME 335A
ME 335B
\# ME 335C
ME 408 (CME 322)
ME 469
PHYSICS 211
STATS 110
STATS 116
STATS 217
MA

| Course Name | Unit Count |
| :--- | :---: |
| Optimal and Learning-based Control | 3 |
| Advanced Feedback Control Design | 3 |
| Numerical Methods for Compressible Flows | 3 |
| Introduction to Multidisciplinary Design Optimization | $3-4$ |
| Decision Making under Uncertainty | $3-4$ |
| Mechanical Vibrations | 3 |
| State Estimation and Filtering for Robotic Perception | 3 |
| Multi-robot Control, Communication, and Sensing | 3 |
| Mechanics and Finite Elements | 3 |
| Introduction to Scientific Computing | $3-4$ |
| Numerical Linear Algebra | 3 |
| Partial Differential Equations of Applied Mathematics | 3 |
| Numerical Solution of Partial Differential Equations | 3 |
| Optimization | 3 |
| Stochastic Methods in Engineering | 3 |
| Artificial Intelligence: Principles and Techniques | $3-4$ |
| Machine Learning | $3-4$ |
| Fourier Transform and its Applications | 3 |
| Introduction to Linear Dynamical Systems | 3 |
| Digital Signal Processing | $3-4$ |
| Introduction to Stochastic Control with Applications | 3 |
| Introduction to Statistical Signal Processing | 3 |
| Convex Optimization I | 3 |
| Convex Optimization II | $3-5$ |
| Analysis and Control of Nonlinear Systems | $3-5$ |
| Dynamic Systems | $3-3$ |
| Stochastic Modeling | 3 |
| Optimization | 3 |
| Dynamic Programming and Stochastic Control | 3 |
| Linear Algebra and Matrix Theory | 3 |
| Functions of a Real Variable | 3 |
| Groups and Rings | 3 |
| Fundamental Concepts of Analysis | 3 |
| All Math courses over 200 will qualify (except seminars) | 3 |
| Linear Algebra with Application to Engineering Computations | 3 |
| Partial Differential Equations in Engineering | 3 |
| Introduction to Numerical Methods for Engineering | 3 |
| Finite Element Analysis | 3 |
| Finite Element Analysis | 3 |
| Finite Element Analysis | 3 |
| Spectral Methods in Computational Physics | 3 |
| Computational Methods in Fluid Mechanics | 3 |
| Continuum Mechanics | 3 |
| Statistical Methods in Engineering and the Physical Sciences | 3 |
| Theory of Probability (not recommended as Ph.D. math - take 110) | 3 |
| Introduction to Stochastic Processes I | 3 |

