Introduction

We are developing robots that are composed of a large number of high elongation linear actuators connected at universal joints into a truss structure. Changing the lengths of the actuator enable the robot to dramatically change its shape, enabling new flexibility for a variety of tasks and missions. We are exploring the following topics:

- Novel High Elongation Actuators using inspiration from soft robotics
- Optimization-based control schemes that allow the robot to locomote and change shape

Related Work

- Tensegrity and tetrahedral robots use a similar architecture, and have been considered for planetary exploration in unstructured environments.
- Methods in changing shape draw from computer graphics
- Formation Control Literature also provides key insights on how to coordinate motions of large numbers of agents to reach target configurations

Hardware

We are developing two separate hardware implementations:

- High elongation pneumatic reel actuators
- A constant volume architecture where movable nodes drive along static pneumatic tubes

Key Advantages:

- Pneumatic components allow inherent compliance
- High elongation enables dramatic shape change

Future Work

- Developing a distributed control architecture (the current optimization controller is centralized)
- Building Physical Robots on which to execute the algorithms
- Evaluate the robot in experimental conditions
- Examine Dynamic Motions of the Robot

Optimization Design

- If the graph describing the robot configuration is infinitesimally rigid, node positions are controllable
- Perform nonlinear optimization to find a kinematic pathway that satisfies physical constraints to help the robot achieve an objective (locomotion or shape change)
- Optimization solved through sequential quadratic programming

Shape Change

- We have developed control algorithms that enable the robot to compute a path between two different shapes
- Shape Changing algorithms inspired by work on shape morphing in computer

Gait Design

- For locomotion, the optimization can determine motion primitives offline that start and end in symmetric configurations
- A high level planner can use the precomputed motion primitives while performing real time planning

Acknowledgments and References

This work was supported in part by National Science Foundation Award 1637446, ONR grant N00014-16-1-2787, and US Army Medical Research and Materiel Command grant W81XWH-15-C-0091.

References
